Reactivity of functionalised cyclometallated complexes of palladium(II). Crystal and molecular structure of $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Br})\left(\mathrm{PEtPh}_{2}\right)\right]$

José M. Vila ${ }^{\text {a,* }}$, M. Teresa Pereira ${ }^{\text {a }}$, Juan M. Ortigueira ${ }^{\text {a }}$, Margarita López Torres ${ }^{\text {a }}$, Alfonso Castiñeiras ${ }^{\text {a }}$, D. Lata ${ }^{\text {a }}$, Jesús J. Fernández ${ }^{\text {b }}$, Alberto Fernández ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Química Inorgánica, Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain
${ }^{\text {b }}$ Departamento de Química Fundamental e Industrial, Universidad de La Coruña, 15071 La Coruña, Spain

Received 5 August 1997

Abstract

Treatment of the cyclometallated complexes $\left[\left\{\mathrm{Pd}\left[3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{X})\right\}_{2}\right][\mathrm{X}=\mathrm{Cl}$ (1), Br (2), I (3)] with tertiary monophosphines in a complex/phosphine 1:2 or 1:4 molar ratio afforded the halide-bridged cleaved $[\mathrm{Pd}\{3-$ $\left.\left.(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{X})(\mathrm{L})\right](6-17)$ and non-cyclometallated complexes $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{X})(\mathrm{L})_{2}\right](\mathbf{1 8}-\mathbf{2 3})(\mathrm{X}=$ Cl, Br or $\mathrm{I} ; \mathrm{L}=\mathrm{PPh}_{3}, \mathrm{PEtPh}_{2}, \mathrm{PEt}_{2} \mathrm{Ph}$ or PMePh_{2}), respectively. Reaction of $\mathbf{6}-\mathbf{1 7}$ with cyclohexylamine in a complex/amine $1: 1$ or $1: 2$ molar ratio gave $\left[\operatorname{Pd}\left\{3-(\mathrm{CyC}(\mathrm{H})=\mathrm{N}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{X})(\mathrm{L})\right] \quad(\mathbf{2 4}-\mathbf{2 8})$ and the non-cyclometallated $[\operatorname{Pd}\{3-$ $\left.\left.(\mathrm{CyC}(\mathrm{H})=\mathrm{N}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{X})(\mathrm{L})\left(\mathrm{NH}_{2} \mathrm{Cy}\right)\right] \quad(29-\mathbf{3 2})$ complexes, respectively. Compounds 18, 19 and 22 gave $[\mathrm{Pd}\{3-$ $\left.\left.(\mathrm{CyC}(\mathrm{H})=\mathrm{N}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{X})\left(\mathrm{PR}_{3}\right)_{2}\right](33-35)$ with two uncoordinated $\mathrm{C}=\mathrm{N}$ groups, when treated with cyclohexylamine. Other reaction routes are also discussed. The complexes were characterised by their elemental analysis ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) and by IR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data, and $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO})\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Br})\left(\mathrm{PEtPh}_{2}\right)\right](\mathbf{1 2})\right.$ was characterised crystallographically. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Cyclometallated; Palladium; Phosphine complexes

1. Introduction

Activation of aryl $\mathrm{C}-\mathrm{H}$ bonds to give cyclometallated complexes is very important in organometallic chemistry [1-6]. Bidentate nitrogen-donor ligands may undergo double cyclometallation to produce compounds with two $\sigma \mathrm{M}-\mathrm{C}$ bonds and with coordination of each nitrogen atom to one of the metal centres [7-11]. However, we have reported that when the aryl ring is substituted with two $\mathrm{C}=\mathrm{N}$ double bonds, as in the case of Schiff bases derived from dialdehydes (e.g. terephthalaldehyde and isophthalaldehyde) mono- or dicyclometallated compounds were obtained [12,13]; thus, the organic ligand may undergo cleavage of one $\mathrm{C}=\mathrm{N}$

[^0]double bond in the metallation process.
One of the very important reactions of cyclometallated compounds is the cleavage of halide bridged complexes by neutral or anionic reagents. We have shown the reactions of halide-bridged complexes derived from N, N-isophthalylidenebis(cyclohexylamine) with anionic reagents (thallium acetilacetonate and thallium cyclopentadienyl) and with cyclohexylamine [13]. We considered that complexation of tertiary phosphines to the palladium atom could be carried out together with reaction of the dinuclear species with cyclohexylamine, which should give regeneration of the $\mathrm{C}=\mathrm{N}$ double bond and/or coordination of the amine moiety, and this is what we have done. Although we have previously studied the reactivity of the halidebridged complexes derived from a similar ligand (N, N -
terephthalylidenebis-cyclohexylamine) with monophosphines, no crystallographic evidence was provided for mononuclear cyclometallated complexes with the formyl functionality on the metallated aryl ring. We have now been able to obtain suitable crystals for the X-ray analysis of one such compound.

2. Results and discussion

2.1. Crystal structure of
 $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Br})\left(\mathrm{PEtPh}_{2}\right)\right]$ (12)

Suitable crystals of the title compound were grown from slowly evaporating a chloroform solution. The molecular structure is illustrated in Fig. 1. Crystal data are given in Table 1. Fractional coordinates and isotropic thermal parameters are listed in Table 2, while selected bond lengths and bond angles with estimated standard deviations are listed in Table 3.

The molecule comprises a palladium(II) to which is bonded a chelated N-(3-formylbenzylidene)cyclohexyl-amine- C^{2}, N group, to a bromine atom and to an ethyldiphenylphosphine ligand. The palladium atom adopts a square-planar geometry as expected for Pd^{2+}. The donor atoms of the chelating Schiff base occupying cis sites, with a somewhat reduced bond angle $\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)$ of $80.9(2)^{\circ}$, consequent upon chelation. This is reflected in the value of the $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pd}(1), 132.0(3)^{\circ}$, angle. The sum of angles at palladium is 360.49°. The $\mathrm{Pd}-\mathrm{C}$ bond length $[\operatorname{Pd}(1)-\mathrm{C}(1), 2.017(4) \AA]$ is shorter than the expected

Fig. 1. Molecular structure of $\quad[\operatorname{Pd}\{3-$ $\left.\left.(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Br})\left(\mathrm{PEtPh}_{2}\right)\right] 12$.

Table 1
Crystal data for compound 12

Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{BrNOPPd}$
Formula weight	614.82
Crystal system	Monoclinic
Space group	$P 2_{1} / n$
Unit cell dimensions	$8.663(1)$
$a(\AA(\AA)$	$12.212(1)$
$b(\AA)$	$24.954(4)$
$c(\AA)$	90
$\alpha\left({ }^{\circ}\right)$	$93.902(7)$
$\beta\left({ }^{\circ}\right)$	90
$\gamma\left({ }^{\circ}\right)$	$2634.0(6) \AA^{3}$
Volume	4
Z	1.550
$\rho_{\text {calc. }}\left(\mathrm{g}\right.$ cm $\left.{ }^{-3}\right)$	2.303
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	1240
$F(000)$	$3.05-30.01^{\circ}$
θ range for data collection	$0<h<12,0<k<17$,
Index ranges	$-34<l<34$
	8061
Reflections collected	$7605\left(R_{\text {int }}=0.0772\right)$
Independent reflections	$7604 / 0 / 293$
Data/restraints $/$ parameters	1.014
GOF on F^{2}	$R_{1}=0.0550, w R_{2}=0.1094$
Final R indices $[I>2 \sigma(I)]$	$R_{1}=0.1366, w R_{2}=0.1373$
R indices $($ all data	
Largest difference peak and hole $(\mathrm{e}$	0.935 and -1.228
$\left.\AA^{-3}\right)$	

value of $2.081 \AA$ based on the sum of the covalent radii for carbon and palladium, 0.771 and $1.31 \AA$, respectively [14]. This is consistent with those found in related complexes where partial multiple-bond character of the $\mathrm{Pd}-\mathrm{C}$ bond was assumed [15-17]. The $\mathrm{Pd}-\mathrm{N}$ bond length $[\mathrm{Pd}(1)-\mathrm{N}(1), 2.128(4) \AA]$ is longer than the expected value of $2.01 \AA$ calculated from the covalent radii of $\mathrm{N}\left(\mathrm{sp}^{2}\right) 0.70 \AA$ and palladium $1.31 \AA$. This lengthening reflects the trans influence of the phosphine ligand. The $\operatorname{Pd}-\mathrm{P}$ bond length $\operatorname{Pd}(1)-\mathrm{P}(1), 2.266 \AA$ is shorter than the sum of the single bond radii for palladium and phosphorus, $2.41 \AA$ [14], as has been found earlier [16]. The $\mathrm{Pd}-\mathrm{Br}$ bond length $\operatorname{Pd}(1)-\operatorname{Br}(1)$, $2.495 \AA$ is somewhat longer than the sum of the covalent radii $(2.45 \AA)$, consistent with the trans-influence of the C(phenyl) atom.

The aromatic ring of the Schiff base is planar (r.m.s $0.0033 \AA$) and approximately coplanar (2.7°) with the adjacent five-membered cyclometallated ring (r.m.s. $0.0179 \AA$). The geometry around the palladium atom is planar (r.m.s. $0.1134 \AA$), from which the displacement of palladium is only $-0.0635 \AA$.

2.2. Reactions with tertiary monophosphines and cyclohexylamine

For the convenience of the reader the compounds and reactions are shown in Scheme 1. The compounds described in this paper were characterised by elemental
analysis and by IR spectroscopy (data in Section 4) and by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (Table 4) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy.

In a previous paper [13] we reported the reactions of compounds $\mathbf{1 - 3}$ with cyclohexylamine, steps \mathbf{i} and iii; however, step ii was not described then, and it has been included here to further complete Scheme 1. Thus, treatment of compound $4(\mathrm{X}=\mathrm{Cl})$ with cyclohexylamine under reflux gave compound $5(\mathrm{X}=\mathrm{Cl})$, with regeneration of the $\mathrm{C}=\mathrm{N}$ double bond (for characterisation of $\mathbf{4}$ and 5, and for the corresponding bromine and iodine analogues, for which step ii also could be effected, see reference [13]).

Treatment of the halide-bridged complexes $[\{\operatorname{Pd}[3-$ $\left.\left.\left.(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{X})\right\}_{2}\right][\mathrm{X}=\mathrm{Cl}(\mathbf{1}), \mathrm{X}=\mathrm{Br}(2)$, $\mathrm{X}=\mathrm{I}$ (3)] with tertiary monophosphines in a dimer/ phosphine 1:2 molar ratio gave the cyclometallated monomer compounds $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}\right.$ (Cl)(L)] (L: 6, $\mathrm{PPh}_{3} ; 7, \mathrm{PEt}_{2} \mathrm{Ph} ; \mathbf{8}, \mathrm{PEtPh}_{2} ; \mathbf{9}, \mathrm{PMePh}_{2}$), $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Br})(\mathrm{L})\right]\left(\mathrm{L}: 10, \mathrm{PPh}_{3} ; 11\right.$,

Table 2
Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1 2}$

Atom	x	y	z	U (eq)
$\mathrm{Pd}(1)$	-11(1)	-16(1)	1239(1)	33(1)
$\operatorname{Br}(1)$	1737(1)	1281(1)	1761(1)	61(1)
$\mathrm{P}(1)$	907(1)	-1463(1)	1733(1)	34(1)
$\mathrm{O}(1)$	-3881(6)	-3380(4)	-742(2)	85(2)
$\mathrm{N}(1)$	-1076(4)	1243(3)	755(2)	37(1)
C(1)	-1181(5)	-954(4)	684(2)	31(1)
C(2)	-1250(5)	-2083(4)	609(2)	36(1)
C(3)	-2043(5)	-2548(4)	168(2)	38(1)
C(4)	-2822(6)	-1909(4)	- 225(2)	41(1)
C(5)	-2761(6)	-778(4)	-162(2)	45(1)
C(6)	-1959(6)	-306(4)	279(2)	37(1)
C(7)	-1855(6)	870(4)	349(2)	41(1)
$\mathrm{C}(8)$	-978(6)	2429(4)	870(2)	38(1)
C(9)	-1590(7)	3167(4)	410(2)	48(1)
C(10)	-1322(9)	4359(5)	582(3)	71(2)
C(11)	-2125(9)	4631(5)	1080(3)	74(2)
C(12)	-1596(8)	3857(5)	1539(3)	66(2)
C(13)	-1821(7)	2664(4)	1365(2)	51(1)
C(14)	-3720(7)	-2423(5)	-677(2)	59(2)
C(15)	2142(6)	-1217(4)	2351(2)	45(1)
C(16)	1325(8)	-760(5)	2818(2)	68(2)
C(17)	-540(5)	-2402(4)	1976(2)	37(1)
C(18)	-2111(6)	-2166(5)	1892(2)	46(1)
C(19)	-3188(7)	-2844(6)	2115(2)	60(2)
C(20)	-2703(7)	-3733(6)	2412(2)	63(2)
C(21)	$-1160(7)$	-3960(5)	2495(2)	55(2)
C (22)	-82(6)	-3313(4)	2276(2)	47(1)
C(23)	2240(5)	-2249(4)	1350(2)	36(1)
C(24)	2128(6)	-3365(4)	1243(2)	47(1)
C(25)	3238(7)	-3884(5)	948(2)	59(2)
C(26)	4428(7)	-3284(6)	759(2)	62(2)
C(27)	4544(7)	-2175(5)	861(2)	60(2)
C(28)	3457(6)	-1666(5)	1151(2)	47(1)

Table 3
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 12

Bond lengths (\AA)			
$\mathrm{Pd}(1)-\mathrm{C}(1)$	$2.017(4)$	$\mathrm{Pd}(1)-\mathrm{N}(1)$	$2.128(4)$
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.2665(13)$	$\mathrm{Pd}(1)-\mathrm{Br}(1)$	$2.4953(7)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.478(6)$	$\mathrm{N}(1)-\mathrm{C}(7)$	$1.264(6)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.416(6)$	$\mathrm{P}(1)-\mathrm{C}(23)$	$1.821(5)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.449(7)$	$\mathrm{P}(1)-\mathrm{C}(17)$	$1.832(5)$
$\mathrm{P}(1)-\mathrm{C}(15)$	$1.841(5)$		
Bond angles $\left.{ }^{\circ}\right)$			
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)$	$80.9(2)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$94.13(13)$
$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$174.17(11)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{Br}(1)$	$167.79(13)$
$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Br}(1)$	$93.53(10)$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{Br}(1)$	$91.93(4)$
$\mathrm{C}(23)-\mathrm{P}(1)-\mathrm{C}(17)$	$108.4(2)$	$\mathrm{C}(23)-\mathrm{P}(1)-\mathrm{C}(15)$	$99.9(2)$
$\mathrm{C}(17)-\mathrm{P}(1)-\mathrm{C}(15)$	$101.3(2)$	$\mathrm{C}(23)-\mathrm{P}(1)-\mathrm{Pd}(1)$	$109.8(2)$
$\mathrm{C}(17)-\mathrm{P}(1)-\mathrm{Pd}(1)$	$116.4(2)$	$\mathrm{C}(15)-\mathrm{P}(1)-\mathrm{Pd}(1)$	$119.4(2)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$122.0(4)$	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{Pd}(1)$	$112.5(3)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{Pd}(1)$	$125.5(3)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$116.3(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pd}(1)$	$132.0(3)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Pd}(1)$	$111.4(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$122.0(4)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$116.5(4)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$118.6(4)$		

$\left.\mathrm{PEt}_{2} \mathrm{Ph} ; \mathbf{1 2}, \mathrm{PEtPh}_{2} ; \quad 13, \mathrm{PMePh}_{2}\right)$ and $[\mathrm{Pd}\{3-$ $\left.\left.(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{I})(\mathrm{L})\right] \quad\left(\mathrm{L}: \quad 14, \quad \mathrm{PPh}_{3} ; \quad 15\right.$, $\left.\mathrm{PEt}_{2} \mathrm{Ph} ; \mathbf{1 6}, \mathrm{PEtPh}_{2} ; \mathbf{1 7}, \mathrm{PMePh}_{2}\right)$, respectively, as pure air-stable solids, which were fully characterised (see Section 4 and Table 4).

Reaction of the halide-bridged complexes $\mathbf{1 - 3}$ with tertiary monophosphines in a dimer/phosphine $1: 4$ molar ratio gave the non-cyclometallated monomer compounds $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Cl})(\mathrm{L})_{2}\right](\mathrm{L}: 18$, $\left.\mathrm{PPh}_{3} ; \quad 19, \quad \mathrm{PMePh}_{2}\right), \quad\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\right.\right.$ $\left.\mathrm{NCy}\}(\mathrm{Br})(\mathrm{L})_{2}\right]\left(\mathrm{L}: \mathbf{2 0}, \mathrm{PPh}_{3} ; \mathbf{2 1}, \mathrm{PMePh}_{2}\right)$ and $[\mathrm{Pd}\{3-$ $\left.\left.(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{I})\left(\mathrm{PR}_{3}\right)_{2}\right] \quad\left(\mathrm{L}: ~ 22, \mathrm{PPh}_{3} ; 23\right.$, PMePh_{2}) respectively, which were fully characterised (see Section 4 and Table 4). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra confirmed the trans geometry of the phosphine ligands, with a singlet resonance in each case, this is also confirmed by the weak intensity of the band at 550 cm^{-1} in the IR spectra [18]. These complexes can also be obtained by reaction of the appropriate cyclometallated monomer compounds ($6-17$) with the corresponding monophosphine in a complex/phosphine 1:1 molar ratio. The reactivity of compounds $\mathbf{6 - 1 7}$ was also tested against cyclohexylamine by refluxing them with the amine to produce compounds where regeneration of the $\mathrm{C}=\mathrm{N}$ double bond from the formyl group was achieved: mononuclear cyclometallated complexes 24-28 (complex/cyclohexylamine 1:1 molar ratio) $\left[\mathrm{Pd}\left\{3-(\mathrm{CyC}(\mathrm{H})=\mathrm{N}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Cl})(\mathrm{L})\right] \quad(\mathrm{L}: \quad 24$, $\mathrm{PPh}_{3} ; 25, \mathrm{PEt}_{2} \mathrm{Ph} ; 26, \mathrm{PEtPh}_{2} ; 27, \mathrm{PMePh}_{2}$), respectively, and $\left[\mathrm{Pd}\left\{3-(\mathrm{CyC}(\mathrm{H})=\mathrm{N}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}-\right.$ (I) $\left.\left(\mathrm{PPh}_{3}\right)\right]$ (28), and mononuclear non-cyclometallated complexes 29-32 (monomer/cyclohexylamine 1:2 molar ratio) $\quad\left[\mathrm{Pd}\left\{3-(\mathrm{CyC}(\mathrm{H})=\mathrm{N}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Cl})(\mathrm{L})-\right.$ $\left.\left(\mathrm{NH}_{2} \mathrm{Cy}\right)\right]\left(\mathrm{L}: 29, \mathrm{PPh}_{3} ; \mathbf{3 0}, \mathrm{PEtPh}_{2} ; 31, \mathrm{PMePh}_{2}\right)$, re-

Scheme 1. (i) CyNH_{2} (2 mol), chloroform, reflux; (ii) CyNH_{2} (1 mol), chloroform, reflux; (iii) CyNH_{2} (4 mol), chloroform, reflux; (iv) PR_{3} (1:2 molar ratio), aqueous acetone, stir at r.t.; (v) PR_{3} ($1: 4$ molar ratio), aqueous acetone, stir at r.t.; (vi) $\mathrm{PR}_{3}(1: 1$ molar ratio), aqueous acetone, stir at r.t.; (vii) PR_{3} (1:1 molar ratio), aqueous acetone, stir at r.t.; (viii) CyNH_{2} (2 mol), chloroform, reflux; (ix) CyNH_{2} (1 mol), chloroform, reflux; (x) $\mathrm{CyNH}_{2}(1 \mathrm{~mol})$, chloroform, reflux; (xi) $\mathrm{CyNH}_{2}(1 \mathrm{~mol})$, chloroform, reflux; (xii) $\mathrm{PR}_{3}\left(1: 1 \mathrm{molar}\right.$ ratio), aqueous acetone, stir at r.t.; (xiii) PR_{3} (1:1 molar ratio), aqueous acetone, stir at r.t.
spectively, and $\left[\mathrm{Pd}\left\{3-(\mathrm{CyC}(\mathrm{H})=\mathrm{N}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}-\right.$ $\left.(\mathrm{Br})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{2} \mathrm{Cy}\right)\right]$ (32); which also show an uncoordinated $\mathrm{C}=\mathrm{N}$ double bond; the amine cleaves the $\mathrm{Pd}-\mathrm{N}$ bond to give compounds where the palladium atom is bonded to four different ligands. The $H \mathrm{C}=\mathrm{N}$ and $H 5$ resonances are not coupled to phosphorus, which is evidence for the twisting of the metallated Schiff base out of the palladium(II) coordination plane [15]; the organic ligand is monodentate through the phenyl carbon atom. Ring opening of the chelate ring was also brought about by treating $\mathbf{2 4}-\mathbf{2 8}$ with equimolar amounts of cyclohexylamine; alternatively, type 5 compounds could be treated with equimolar amounts of the appropriate phosphine to yield compounds 29-32 (see Section 4).

Treatment of 24-28 with the appropriate phosphine in a complex/phosphine 1:1 molar ratio gave the mononuclear non-cyclometallated compounds $[\mathrm{Pd}\{3-$ $\left.\left.\left(\mathrm{CyNC}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}=\mathrm{H}\right)=\mathrm{NCy}\right\}(\mathrm{Cl})(\mathrm{L})_{2}\right] \quad\left(\mathrm{L}: 33, \mathrm{PPh}_{3} ; 34\right.$, $\left.\mathrm{PMePh}_{2}\right)$ and $\left[\mathrm{Pd}\left\{3-(\mathrm{CyNC}=\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{I})-\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] (35) with two uncoordinated $\mathrm{C}=\mathrm{N}$ groups each, and with two mutually trans phosphine ligands which were fully characterised (see Section 4 and Table 4).

The compounds could also be made from $\mathbf{1 8}-\mathbf{2 3}$ by treatment with equimolar amounts of cyclohexylamine under reflux, or from 29-32, by reaction with the corresponding phosphine at room temperature (r.t.) (see Section 4). Attempts to obtain 33-35 from $\mathbf{6}-17$ by successive reaction with the amine and the phosphine in a 'one pot' process, were unsuccessful.

3. Conclusions

Although Schiff base cyclometallated palladium(II) complexes with a phosphine ligand bonded to the metal atom are known, the structure of compound $\mathbf{1 2}$ is the first example where the metallated ring is functionalised by a free formyl group. The presence of the formyl group renders versatile reaction routes; the order with which the ligands are added to the coordination sphere of the palladium atom and with which the second $\mathrm{C}=\mathrm{N}$ double bond is regenerated, may be varied. This gives different approaches to the synthesis of many of the compounds described.

Table 4
${ }^{31} \mathrm{P}-\mathrm{NMR}^{\mathrm{a}}$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}^{\mathrm{b}}$ data $^{\mathrm{c}, \mathrm{d}}$

Compound	${ }^{31} \mathrm{P}$	Aromatic	Others
6	21.5 s	$\begin{aligned} & 7.71\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.9^{\mathrm{e}}\right] \\ & 6.98\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.9^{\mathrm{e}}\right] \\ & 6.59\left[\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}, 5.9^{\mathrm{h}}, 0.9^{\mathrm{g}}\right] \end{aligned}$	$\begin{aligned} & 9.75[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.24\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 8.6^{\mathrm{h}}, 0^{9} .9^{-}\right] \end{aligned}$
7	32.5 s	$\begin{aligned} & 7.71\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.9^{\mathrm{e}}\right] \\ & 7.15\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.9^{\mathrm{e}}\right] \\ & 6.62\left[\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}, 5.7^{\mathrm{h}}, 1.0^{\mathrm{g}}\right] \end{aligned}$	$\begin{aligned} & 9.78[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.17\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 8.2^{\mathrm{h}}, 1.0^{2}\right] \end{aligned}$
8	34.6s	$\begin{aligned} & 7.71\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.9^{\mathrm{e}}\right] \\ & 7.05\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.9^{\mathrm{e}}\right] \\ & 6.66\left[\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}, 5.7^{\mathrm{h}}, 1.0^{2}\right] \end{aligned}$	$\begin{aligned} & 9.76[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.19\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 8.4^{\mathrm{h}}, 1.0^{\mathrm{g}}\right] \end{aligned}$
9	21.9s	$\begin{aligned} & 7.72\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.8^{\mathrm{e}}\right] \\ & 7.05\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.9^{\mathrm{f}}, 1.8^{\mathrm{e}}\right] \\ & 6.59\left[\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.9^{\mathrm{f}}, 6.0^{\mathrm{h}}, 0.9^{\mathrm{g}}\right] \end{aligned}$	$\begin{aligned} & 9.76[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.19\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 8.7^{\mathrm{h}}, 0.9^{\mathrm{g}}\right] \end{aligned}$
10	20.4s	$\begin{aligned} & 7.71\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.8^{\mathrm{e}}\right] \\ & 7.00\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.8^{\mathrm{e}}\right] \\ & 6.58\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}, 6.2^{\mathrm{h}}\right] \end{aligned}$	$\begin{aligned} & 9.76[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.26\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 8.6^{\mathrm{h}}\right] \end{aligned}$
11	32.9 s	$\begin{aligned} & 7.71\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.5^{\mathrm{e}}\right] \\ & 7.16\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.9^{\mathrm{f}}, 1.5^{\mathrm{e}}\right] \\ & 6.61\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{s}}, 7.9^{\mathrm{f}}, 6.0^{\mathrm{h}}\right] \end{aligned}$	$\begin{aligned} & 9.78[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.18\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 7.9^{\mathrm{h}}\right] \end{aligned}$
12	35.0s	$\begin{aligned} & 7.71\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.8^{\mathrm{e}}\right] \\ & 7.05\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.8^{\mathrm{e}}\right] \\ & 6.62\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}, 6.0^{\mathrm{h}}\right] \end{aligned}$	$\begin{aligned} & 9.76[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.22\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 8.3^{\mathrm{h}}\right] \end{aligned}$
13	22.0s	$\begin{aligned} & 7.71\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.8^{\mathrm{e}}\right] \\ & 7.05\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.8^{\mathrm{e}}\right] \\ & 6.57\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}\right] \end{aligned}$	$\begin{aligned} & 9.76[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.21\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 7.9^{\mathrm{h}}\right] \end{aligned}$
14	20.7s	$\begin{aligned} & 7.71\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.4^{\mathrm{e}}\right] \\ & 7.00\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.5^{\mathrm{f}}, 1.4^{\mathrm{e}}\right] \\ & 6.54\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.5^{\mathrm{f}}, 7.5^{\mathrm{h}}\right] \end{aligned}$	$\begin{aligned} & 9.76[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.32\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 8.1^{\mathrm{h}}\right] \end{aligned}$
15	34.6s	$\begin{aligned} & 7.71\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.9^{\mathrm{e}}\right] \\ & 7.18\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.9^{\mathrm{e}}\right] \\ & 6.61\left[\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}, 6.0^{\mathrm{h}}, 0.9^{\mathrm{g}}\right] \end{aligned}$	$\begin{aligned} & 9.79[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.24\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 8.0^{\mathrm{h}}, 0^{9} .9^{\mathrm{g}}\right] \end{aligned}$
16	36.2s	$\begin{aligned} & 7.71\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.9^{\mathrm{e}}\right] \\ & 7.05\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.9^{\mathrm{e}}\right] \\ & 6.54\left[\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}, 6.3^{\mathrm{h}}, 1.0^{\mathrm{g}}\right] \end{aligned}$	$\begin{aligned} & 9.76[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.27\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 8.2^{\mathrm{h}}, 1.0^{2}\right] \end{aligned}$
17	22.0s	$\begin{aligned} & 7.71\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.9^{\mathrm{e}}\right] \\ & 7.07\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.4^{\mathrm{f}}, 1.9^{\mathrm{e}}\right] \\ & 6.53\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.4^{\mathrm{f}}, 7.0^{\mathrm{h}}\right] \end{aligned}$	$\begin{aligned} & 9.76[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.27\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 8.0^{\mathrm{h}}\right] \end{aligned}$
$18^{\text {I }}$	22.0s	$\begin{aligned} & 6.98\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.9^{\mathrm{e}}\right] \\ & 6.62\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}\right] \end{aligned}$	$\begin{aligned} & 9.76[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.26[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}] \end{aligned}$
$19^{\text {I }}$	4.0s	$\begin{aligned} & 7.05\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.4^{\mathrm{e}}\right] \\ & 7.18\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}\right] \end{aligned}$	$\begin{aligned} & 9.70[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.42[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}] \end{aligned}$
$20^{\text {I }}$	21.5 s	$\begin{aligned} & 6.97\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.9^{\mathrm{e}}\right] \\ & 6.65\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}\right] \end{aligned}$	$\begin{aligned} & 9.74[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.33[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}] \end{aligned}$
$21^{\text {I }}$	3.6s	$7.05\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.8^{\mathrm{e}}\right]$	$\begin{aligned} & 9.68[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.43[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}] \end{aligned}$
$22^{\text {I }}$	20.8s	$\begin{aligned} & 6.95\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.8^{\mathrm{e}}\right] \\ & 6.65\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\circ}\right] \end{aligned}$	$\begin{aligned} & 9.73[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.44[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}] \end{aligned}$
$23{ }^{\text {I }}$	2.4s	$7.05\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.9^{\text {f }}, 1.9^{\text {e }}\right]$	$\begin{aligned} & 9.67[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{O}] \\ & 8.35[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}] \end{aligned}$
$24^{\text {I }}$	40.8s	$\begin{aligned} & 6.80\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 2.0^{\mathrm{e}}\right] \\ & 6.45\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}, 5.7^{\mathrm{h}}\right] \end{aligned}$	$\begin{aligned} & 8.19\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 7.8^{\mathrm{h}}\right] \\ & 8.08\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}^{\mathrm{j}}\right] \end{aligned}$
25	32.4 s	$\begin{aligned} & 7.66\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.8^{\mathrm{e}}\right] \\ & 7.00\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.8^{\mathrm{e}}\right] \\ & 6.48\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}, 5.8^{\mathrm{h}}\right] \end{aligned}$	$\begin{aligned} & 8.13\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 9.4^{\mathrm{h}}\right] \\ & 8.11\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}^{\mathrm{j}}\right] \end{aligned}$

Table 4 (continued)

Compound	${ }^{31} \mathrm{P}$	Aromatic	Others
26	34.6s	$\begin{aligned} & 7.64\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 1.6^{\mathrm{e}}\right] \\ & 6.87\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 1.6^{\mathrm{e}}\right] \\ & 6.51\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}, 5.5^{\mathrm{h}}\right] \end{aligned}$	$\begin{aligned} & 8.14\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 8.0^{\mathrm{h}}\right] \\ & 8.08\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}^{\mathrm{j}}\right] \end{aligned}$
27^{1}	22.0s	$\begin{aligned} & 6.90\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}\right] \\ & 6.47\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}, 5.6^{\mathrm{h}}\right] \end{aligned}$	$\begin{aligned} & 8.16\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 7.8^{\mathrm{h}}\right] \\ & 8.10\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}^{\mathrm{j}}\right] \end{aligned}$
$28{ }^{1}$	41.0s	$\begin{aligned} & 6.81\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.9^{\mathrm{f}}, 2.0^{\mathrm{c}}\right] \\ & 6.38\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.9^{\mathrm{f}}, 5.8^{\mathrm{h}}\right] \end{aligned}$	$\begin{aligned} & 8.25\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}, 8^{\mathrm{h}}\right] \\ & 8.06\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}^{\mathrm{j}}\right] \end{aligned}$
29^{1}	27.2s	$\begin{aligned} & 6.81\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 2.0^{\mathrm{e}}\right] \\ & 6.44\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{f}\right] \end{aligned}$	$8.21[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}]$ 8.07[s, $\left.1 \mathrm{H}, \mathrm{HC}=\mathrm{N}^{\mathrm{j}}\right]$
30^{1}	34.5 s	$\begin{aligned} & 6.87\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.9^{\mathrm{f}}\right] \\ & 6.51\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.9^{\mathrm{f}}\right] \end{aligned}$	$\begin{aligned} & 8.13[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}] \\ & 8.07[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}] \end{aligned}$
$31{ }^{\text {I }}$	21.9s	$\begin{aligned} & 6.88\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.9^{\mathrm{f}}, 1.9^{\mathrm{e}}\right] \\ & 6.45\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.9^{\mathrm{f}}\right] \end{aligned}$	$8.15[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}]$ $8.07\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}^{\mathrm{i}}\right]$
32^{1}	40.7s	$\begin{aligned} & 6.81\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.0^{\mathrm{f}}, 2.0^{\mathrm{e}}\right] \\ & 6.42\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.0^{\mathrm{f}}\right] \\ & \text {. } \end{aligned}$	$\begin{aligned} & 8.21[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}] \\ & 8.07\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}^{\mathrm{i}}\right] \end{aligned}$
33^{1}	27.3 s	$\begin{aligned} & 6.80\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.9^{\mathrm{f}}, 1.9^{\mathrm{e}}\right] \\ & 6.43\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.9^{\mathrm{f}}\right] \end{aligned}$	$\begin{aligned} & 8.26[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}] \\ & 8.09[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}] \end{aligned}$
34^{1}	6.3 s	$\begin{aligned} & 7.11\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.9^{\mathrm{f}}, 1.9^{\mathrm{e}}\right] \\ & 7.00\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.9^{\mathrm{f}}\right] \end{aligned}$	$8.39[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}]$ $8.09\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}{ }^{\mathrm{j}}\right]$
35^{1}	27.4s	$\begin{aligned} & 6.82\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, 8.1^{\mathrm{f}}, 2.0^{\mathrm{c}}\right] \\ & 6.43\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 8.1^{\mathrm{f}}\right] \end{aligned}$	$\begin{aligned} & 8.29[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}] \\ & 8.06\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}^{\mathrm{j}}\right] \end{aligned}$

${ }^{\text {a }}$ In CDCl_{3}. Measured at $100.6 \mathrm{MHz}\left(\mathrm{ca} . \pm 20^{\circ} \mathrm{C}\right)$; chemical shifts (δ) in ppm (± 0.1) to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. ${ }^{\mathrm{b}}$ In CDCl_{3}, unless otherwise stated. Measured at $250 \mathrm{MHz}\left(\mathrm{ca} . \pm 20^{\circ} \mathrm{C}\right)$; chemical shifts (δ) in $\mathrm{ppm}(\pm 0.01)$ to high frequency of SiMe_{4}. ${ }^{\mathrm{c}}$ Coupling constants in $\mathrm{Hz} .{ }^{\mathrm{d}}$ s, singlet; d, doublet; dd, doublet of doublets; ddd, doublet of doublets of doublets; t, triplet. ${ }^{4} J(\mathrm{HH}) .{ }^{\mathrm{f}} 3(\mathrm{HH}) .{ }^{\mathrm{g}}{ }^{5} J(\mathrm{HH})$.
${ }^{\mathrm{h}}{ }^{4} J(\mathrm{PH}) .{ }^{\mathrm{i}}$ Occluded by the phosphine resonances. ${ }^{\mathrm{j}} \mathrm{C}=\mathrm{N}$ group bonded to C 3 .

4. Experimental details

4.1. Materials and instrumentation

The synthesis of complexes $\mathbf{1 - 5}$ has been reported previously [13]. Solvents were purified by standard methods [19]. Chemicals were reagent grade. Cyclohexylamine and the phosphines $\mathrm{PPh}_{3}, \mathrm{PEtPh}_{2}, \mathrm{PEt}_{2} \mathrm{Ph}$ and PMePh_{2} were purchased from Aldrich. Microanalyses were carried out at the Servicio de Análisis Elemental at the University of Santiago using a CarloErba Elemental Analyzer, Model 1108. IR spectra were recorded as KBr or polythene discs on a Perkin-Elmer 1330 and on a Mattson (Servicio de Espectroscopía of the University of Santiago) spectrophotometers. NMR spectra were obtained as CDCl_{3} solutions and referenced to $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right)$ and were recorded on Bruker WM-250, AMX-300 and AMX-500 spectrometers. All chemical shifts were reported downfield from the standards.

4.2. Preparations

4.2.1. $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)\right] \mathbf{6}$

A sample of $\mathrm{PPh}_{3}(44 \mathrm{mg}, 0.17 \mathrm{mmol})$ was added to a solution of $\mathbf{1}(60 \mathrm{mg}, 0.08 \mathrm{mmol})$ in acetone $\left(15 \mathrm{~cm}^{3}\right)$.

The mixture was stirred for 4 h at r.t. and the resulting precipitate was filtered off and the product recrystallised from dichloromethane/hexane as a yellow solid. Yield 75%. Anal. Found: C, 61.8; H, 5.3; N, 2.1. $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NOPdPCl}$ requires: C, 62.2; H, 5.1; N, 2.3. IR: $v(\mathrm{C}=\mathrm{N}), 1622 \mathrm{~m} \mathrm{~cm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl}), 302 \mathrm{~m} \mathrm{~cm}^{-1}$.
The following compounds were made analogously:

4.2.2. $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Cl})\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)\right] 7$

Yield 75%. Anal. Found: C, 55.2; H, 6.4; N, 2.9. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NOPdPCl}$ requires: $\mathrm{C}, 55.2 ; \mathrm{H}, 6.0 ; \mathrm{N}, 2.7$. IR: $v(\mathrm{C}=\mathrm{N}), 1620 \mathrm{~m} \mathrm{~cm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl}), 302 \mathrm{~m} \mathrm{~cm}^{-1}$.

4.2.3. $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Cl})\left(\mathrm{PEtPh}_{2}\right)\right] \boldsymbol{8}$

Yield 78%. Anal. Found: C, 57.0 ; H, 5.5; N, 2.5. $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NOPdPCl} \cdot 0.33 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires: $\mathrm{C}, 56.8 ; \mathrm{H}, 5.3$; N, 2.3. IR: $v(\mathrm{C}=\mathrm{N}), 1622 \mathrm{~m} \mathrm{~cm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl}), 301 \mathrm{~m}$ cm^{-1}.

[^1]4.2.5. $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Br})\left(\mathrm{PPh}_{3}\right)\right] \mathbf{1 0}$

Yield 75%. Anal. Found: C, 57.4; H, 4.5; N, 1.9. $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NOPdPBr}$ requires: C, 58.0; H, 4.7; N, 2.1. IR: $v(\mathrm{C}=\mathrm{N}), 1625 \mathrm{~m} \mathrm{~cm}^{-1}$.
4.2.6. $\left[P d\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Br})\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)\right] 11$ Yield 68%. Anal. Found: C, 51.2; H, 5.8; N, 2.0. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NOPdPBr}$ requires: $\mathrm{C}, 50.9 ; \mathrm{H}, 5.5 ; \mathrm{N}, 2.5$. IR: $v(\mathrm{C}=\mathrm{N}), 1615 \mathrm{~m} \mathrm{~cm}^{-1}$.

4.2.7. $\left[P d\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Br})\left(\mathrm{PEtPh} h_{2}\right)\right] 12$

 Yield 75\%. Anal. Found: C, 54.3; H, 5.1; N, 2.4. $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NOPdPBr}$ requires: C, 54.7; H, 5.0; N, 2.3. IR: $v(\mathrm{C}=\mathrm{N}), 1615 \mathrm{~m} \mathrm{~cm}^{-1}$.
4.2.8. $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Br})\left(\mathrm{PMePh}_{2}\right)\right] 13$

 Yield 70%. Anal. Found: C, 54.5; H, 4.8; N, 2.8. $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NOPdPBr}$ requires: $\mathrm{C}, 54.0 ; \mathrm{H}, 4.9 ; \mathrm{N}, 2.3$. IR: $v(\mathrm{C}=\mathrm{N}), 1615 \mathrm{~m} \mathrm{~cm}^{-1}$.
4.2.9. $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{I})\left(\mathrm{PPh}_{3}\right)\right] \mathbf{1 4}$

Yield 70\%. Anal. Found: C, 54.4; H, 4.8; N, 2.1. $\mathrm{C}_{32} \mathrm{H}_{31}$ NOPdPI requires: $\mathrm{C}, 54.1 ; \mathrm{H}, 4.4 ; \mathrm{N}, 2.0$. IR: $v(\mathrm{C}=\mathrm{N}), 1620 \mathrm{~m} \mathrm{~cm}^{-1}$.

4.2.10. $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{I})\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)\right] 15$

Yield 70%. Anal. Found: C, 46.8; H, 5.0; N, 2.2. $\mathrm{C}_{24} \mathrm{H}_{31}$ NOPdPI requires: $\mathrm{C}, 47.0 ; \mathrm{H}, 5.1 ; \mathrm{N}, 2.3$. IR: $v(\mathrm{C}=\mathrm{N}), 1618 \mathrm{~m} \mathrm{~cm}^{-1}$.

4.2.11. $\left[P d\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{I})\left(\mathrm{PEtPh} h_{2}\right)\right] 16$

Yield 70%. Anal. Found: C, 50.8; H, 4.7; N, 2.2. $\mathrm{C}_{28} \mathrm{H}_{31}$ NOPdPI requires: $\mathrm{C}, 50.8 ; \mathrm{H}, 4.7 ; \mathrm{N}, 2.1$. IR: $v(\mathrm{C}=\mathrm{N}), 1622 \mathrm{~m} \mathrm{~cm}^{-1}$.

4.2.12. $\left[P d\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{I})\left(\mathrm{PMePh}_{2}\right)\right] 17$

 Yield 73%. Anal. Found: C, 48.9; H, 4.4; N, 2.4. $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NOPdPI} \cdot 0.33 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires: $\mathrm{C}, 48.6 ; \mathrm{H}, 4.4$; N, 2.6. IR: $v(\mathrm{C}=\mathrm{N}), 1620 \mathrm{~m} \mathrm{~cm}^{-1}$.
4.2.13. $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\right]$

4.2.13.1. Method a. The complex was synthesised following a similar procedure to that of 6 but using a dimer/phosphine $1: 4$ molar ratio. Yield 68%. Anal. Found: C , $65.4 ; \quad \mathrm{H}, \quad 5.5 ; \quad \mathrm{N}, \quad 1.8$. $\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{NOPdP}_{2} \mathrm{Cl} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires: C, $65.7 ; \mathrm{H}, 5.1$; $\mathrm{N}, 1.5$. IR: $v(\mathrm{C}=\mathrm{N}), 1625 \mathrm{~m} \mathrm{~cm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl}), 290 \mathrm{~m}$ cm^{-1}.
4.2.13.2. Method b. A sample of $\mathrm{PPh}_{3}(21.2 \mathrm{mg}, 0.08$ $\mathrm{mmol})$ was added to a solution of $6(50 \mathrm{mg}, 0.08 \mathrm{mmol})$ in acetone $\left(15 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 4 h at r.t. and the resulting precipitate was filtered off and the product recrystallised from dichloromethane/hexane as a yellow solid.

The following compounds were made similarly:
4.2.14. $\quad\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Cl})\left(\mathrm{PMePh}_{2}\right)_{2}\right]$ 19

Yield 70\%. Anal. Found: C, 64.0; H, 6.0; N, 2.0. $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{NOPdP}_{2} \mathrm{Cl}$ requires: C, 63.5; H, 5.6; N, 1.9. IR: $v(\mathrm{C}=\mathrm{N}), 1625 \mathrm{~m} \mathrm{~cm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl}), 294 \mathrm{~m} \mathrm{~cm}^{-1}$.

4.2.15. $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Br})\left(\mathrm{PPh}_{3}\right)_{2}\right] 20$

Yield 65%. Anal. Found: C, 61.4; H, 4.8; N, 1.6. $\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{NOPdP}_{2} \mathrm{Br} \cdot 0.5 \mathrm{CHCl}_{3}$ requires: $\mathrm{C}, 61.6 ; \mathrm{H}, 4.8$; $\mathrm{N}, 1.4$. IR: $v(\mathrm{C}=\mathrm{N}), 1625 \mathrm{~m} \mathrm{~cm}^{-1}$.

4.2.16. $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Br})\left(\mathrm{PMePh}_{2}\right)_{2}\right]$ 21

Yield 65%. Anal. Found: C, 60.5; H, 5.6; N, 1.4. $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{NOPdP}_{2} \mathrm{Br}$ requires: C, 60.0; H, 5.3; N, 1.8. IR: $v(\mathrm{C}=\mathrm{N}), 1630 \mathrm{~m} \mathrm{~cm}^{-1}$.
4.2.17. $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{I})\left(\mathrm{PPh}_{3}\right)_{2}\right] 22$

Yield 60%. Anal. Found: C, 61.8; H, 4.7; N, 1.3. $\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{NOPdP}_{2} \mathrm{I}$ requires: $\mathrm{C}, 61.8 ; \mathrm{H}, 4.8 ; \mathrm{N}, 1.4$. IR: $v(\mathrm{C}=\mathrm{N}), 1625 \mathrm{~m} \mathrm{~cm}^{-1}$.
4.2.18. $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{I})\left(\mathrm{PMePh}_{2}\right)_{2}\right] 23$

Yield 76\%. Anal. Found: C, 57.2; H, 5.5; N, 2.0. $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{NOPdP}_{2} \mathrm{I}$ requires: $\mathrm{C}, 56.7 ; \mathrm{H}, 5.0 ; \mathrm{N}, 1.7$. IR: $v(\mathrm{C}=\mathrm{N}), 1630 \mathrm{~m} \mathrm{~cm}^{-1}$.

4.2.19. $\left[P d\left\{3-(C y C(H)=N) C_{6} H_{3} C(H)=N C y\right\}(C l)\left(P P h_{3}\right)\right]$ 24

A mixture of $6(50 \mathrm{mg}, 0.08 \mathrm{mmol})$ and cyclohexylamine ($9 \mathrm{mg}, 0.09 \mathrm{mmol}$) in chloroform $\left(25 \mathrm{~cm}^{3}\right)$ was heated under reflux for 8 h in a Dean-Stark apparatus. After cooling to r.t., the solution was evaporated under reduced pressure and the required product was isolated from dichloromethane/hexane as a yellow solid. Yield 88%. Anal. Found: C, 59.2; H, 6.0; N, 3.2. $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{PdPCl} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires: $\mathrm{C}, 59.7 ; \mathrm{H}, 5.7 ; \mathrm{N}$, 3.6. IR: $v(\mathrm{C}=\mathrm{N}), 1638 \mathrm{~h}, \mathrm{~m}, 1620 \mathrm{~m} \mathrm{~cm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl})$, $275 \mathrm{~m} \mathrm{~cm}^{-1}$.

The following compounds were made analogously:

4.2.20. $\left[P d\left\{3-(C y C(H)=N) C_{6} H_{3} C(H)=N C y\right\}(C l)-\right.$
 ($\mathrm{PEt} t_{2} \mathrm{Ph}$)] 25

Yield 83%. Anal. Found: C, 54.7; H, 6.7; N, 3.8. $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{PdPCl} \cdot \mathrm{CHCl}_{3}$ requires: C, $55.2 ; \mathrm{H}, 6.5 ; \mathrm{N}$, 4.2. IR: $v(\mathrm{C}=\mathrm{N}), 1640 \mathrm{sh}, \mathrm{m}, 1620 \mathrm{sh}, \mathrm{m} \mathrm{cm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl})$, $275 \mathrm{~m} \mathrm{~cm}^{-1}$.

4.2.21. $\left[P d\left\{3-(C y C(H)=N) C_{6} H_{3} C(H)=N C y\right\}(C l)-\right.$ ($\mathrm{PEtPh} \mathrm{H}_{2}$)] 26

Yield 78\%. Anal. Found: C, 59.6; H, 6.3; N, 3.7. $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{PdPCl} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires: $\mathrm{C}, 60.0 ; \mathrm{H}, 6.2$; N , 4.0. IR: $v(\mathrm{C}=\mathrm{N}), 1638 \mathrm{~m}, 1620 \mathrm{~m} \mathrm{~cm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl})$, $271 \mathrm{~m} \mathrm{~cm}^{-1}$.
4.2.22. $\left[P d\left\{3-(C y C(H)=N) C_{6} H_{3} C(H)=N C y\right\}(C l)-\right.$
(PMePh$)_{2}$)] 27
Yield 70%. Anal. Found: C, 57.5; H, 6.2; N, 3.8. $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{PdPCl} \cdot 0.5 \mathrm{CHCl}_{3}$ requires: $\mathrm{C}, 57.7 ; \mathrm{H}, 5.9 ; \mathrm{N}$, 4.0. IR: $v(\mathrm{C}=\mathrm{N}), 1638 \mathrm{~m}, 1620 \mathrm{~m} \mathrm{~cm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl}), 271 \mathrm{~m}$ cm^{-1}.

4.2.23. $\left[P d\left\{3-(C y C(H)=N) C_{6} H_{3} C(H)=N C y\right\}(I)\left(P P h_{3}\right)\right]$

 28Yield 80%. Anal. Found: C, 58.0; H, 6.0; N, 4.0. $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{PdPI}$ requires: C, $57.7 ; \mathrm{H}, 5.4 ; \mathrm{N}, 3.5$. IR: $v(\mathrm{C}=\mathrm{N}), 1632 \mathrm{~m}, 1618 \mathrm{~m} \mathrm{~cm}^{-1}$.

4.2.24. $\left[P d\left\{3-(C y C(H)=N) C_{6} H_{3} C(H)=N C y\right\}(C l)-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{2} \mathrm{Cy}\right)\right] 29$

4.2.24.1. Method a. The complex was synthesised following a similar procedure to that of 24 but using a monomer/cyclohexylamine 1:2 ratio. Yield 55%. Anal. Found: C, 63.3; H, 6.5; N, 4.8. $\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{PdPCl} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires: $\mathrm{C}, 63.5 ; \mathrm{H}, 6.7$; $\mathrm{N}, 5.0$. IR: $v(\mathrm{C}=\mathrm{N}), 1630 \mathrm{sh}, \mathrm{m}, 1620 \mathrm{~m} \mathrm{~cm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl})$, $273 \mathrm{~m} \mathrm{~cm}^{-1}$.
4.2.24.2. Method b. To a solution of $24(30 \mathrm{mg}, 0.043$ mmol) in $\mathrm{CHCl}_{3} \mathrm{CyNH}_{2}(4.3 \mathrm{mg}, 0.043 \mathrm{mmol})$) was added in a cyclometallated complex/amine 1:1 molar ratio. The solution was heated under reflux for 8 h in a Dean-Stark apparatus. After cooling to r.t., the solution was evaporated under reduced pressure and the required product was isolated from dichloromethane/hexane.
4.2.24.3. Method c. A sample of $\mathrm{PPh}_{3}(9.78 \mathrm{mg}, 0.04$ $\mathrm{mmol})$ was added to a solution of $5(20 \mathrm{mg}, 0.04 \mathrm{mmol})$ in acetone $\left(15 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 4 h at r.t. and the resulting precipitate was filtered off and the product recrystallised from dichloromethane/hexane.

The following compounds were prepared similarly:

4.2.25. $\left[P d\left\{3-(C y C(H)=N) C_{6} H_{3} C(H)=N C y\right\}(C l)-\right.$

 $\left.\left(\mathrm{PEtPh}_{2}\right)\left(\mathrm{NH}_{2} \mathrm{Cy}\right)\right] 30$Yield 40%. Anal. Found: C, 60.4; H, 6.8; N, 5.0. $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{PdPCl} \cdot 0.5 \mathrm{CHCl}_{3}$ requires: $\mathrm{C}, 60.1 ; \mathrm{H}, 6.8 ; \mathrm{N}$, 5.2. IR: $v(\mathrm{C}=\mathrm{N}), 1635 \mathrm{~m}, 1618 \mathrm{~m} \mathrm{~cm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl}), 272 \mathrm{~m}$ cm^{-1}.

[^2]4.2.27. $\mathrm{Pd}\left\{3-(\mathrm{CyC}(\mathrm{H})=\mathrm{N}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Br})\left(\mathrm{PPh}_{3}\right)-$ ($\left.\left.\mathrm{NH}_{2} \mathrm{Cy}\right)\right] 32$

Yield 65%. Anal. Found: C, $54.0 ; \mathrm{H}, 5.5 \mathrm{~N}, 4.0$. $\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{PdPBr} \cdot 1.5 \mathrm{CHCl}_{3}$ requires: C, $54.3 ; \mathrm{H}, 5.7 ; \mathrm{N}$, 4.2. IR: $v(\mathrm{C}=\mathrm{N}), 1635 \mathrm{~m}, 1618 \mathrm{~m} \mathrm{~cm}^{-1}$.

4.2.28. $\left[P d\left\{3-(C y C(H)=N) C_{6} H_{3} C(H)=N C y\right\}(C l)-\right.$ $\left.\left(P P h_{3}\right)_{2}\right] 33$

4.2.28.1. Method a. The complex was synthesised following a similar procedure to that of 24 . Yield 70%. Anal. Found: C, 58.2; H, 5.4; N, 2.4. $\mathrm{C}_{56} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{PdP}_{2} \mathrm{Cl} \cdot 2 \mathrm{CHCl}_{3}$ requires: C, $58.0 ; \mathrm{H}, 5.0 ; \mathrm{N}$, 2.3. IR: $v(\mathrm{C}=\mathrm{N}), 1637 \mathrm{~m} \mathrm{~cm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl}), 291 \mathrm{~m} \mathrm{~cm}^{-1}$.
4.2.28.2. Method b. A sample of $\mathrm{PPh}_{3}(11.2 \mathrm{mg}, 0.04$ mmol) was added to a solution of $24(30 \mathrm{mg}, 0.04$ $\mathrm{mmol})$ in acetone ($15 \mathrm{~cm}^{3}$). The mixture was stirred for 4 h at r.t. and the resulting precipitate was filtered off and the product recrystallised from chloroform/hexane.
4.2.28.3. Method c. A sample of $\mathrm{PPh}_{3}(6.75 \mathrm{mg}, 0.025$ $\mathrm{mmol})$ was added to a solution of $29(20 \mathrm{mg}, 0.025$ $\mathrm{mmol})$ in acetone $\left(15 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 4 h at r.t. and the resulting precipitate was filtered off and the product recrystallised from chloroform/hexane.

Compounds 34 and $\mathbf{3 5}$ were prepared similarly:

4.2.29. $\left[P d\left\{3-(C y C(H)=N) C_{6} H_{3} C(H)=N C y\right\}(C l)-\right.$ $\left.\left(\mathrm{PMePh}_{2}\right)_{2}\right] \mathbf{3 4}$

Yield 76%. Anal. Found: C, 62.6; H, 6.3; N, 3.3. $\mathrm{C}_{46} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{PdP}_{2} \mathrm{Cl} \cdot 0.5 \mathrm{CHCl}_{3}$ requires: $\mathrm{C}, 62.2 ; \mathrm{H}, 6.0$; $\mathrm{N}, 3.1$. IR: $v(\mathrm{C}=\mathrm{N}), 1636 \mathrm{~m} \mathrm{~cm}{ }^{-1} ; v(\mathrm{Pd}-\mathrm{Cl}), 275 \mathrm{~m}$ cm^{-1}.

4.2.30. $\left[P d\left\{3-(C y C(H)=N) C_{6} H_{3} C(H)=N C y\right\}(I)\left(P P h_{3}\right)_{2}\right]$

 35Yield 75\%. Anal. Found: C, 63.8; H, 5.7; N, 2.5. $\mathrm{C}_{56} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{PdP}_{2} \mathrm{I}$ requires: $\mathrm{C}, 63.9 ; \mathrm{H}, 5.5 ; \mathrm{N}, 2.7$. IR: $v(\mathrm{C}=\mathrm{N}), 1638 \mathrm{sh}, \mathrm{m}, 1622 \mathrm{~m} \mathrm{~cm}^{-1}$.

4.3. Single-crystal X-ray diffraction analysis

A prismatic yellow crystal of dimensions $0.15 \times$ $0.25 \times 0.40 \mathrm{~mm}$ of $\mathbf{1 2}$ was mounted on a glass fiber in a Enraf-Nonius CAD4 diffractometer for data collection. Unit cell parameters were determined from leastsquares on setting angles of 25 reflections with $8.45<$ $\theta<11.90^{\circ}$. Data were collected at r.t. by the $\omega / 2 \theta$ scan technique using graphite monochromatised $\mathrm{Mo}-\mathrm{K}_{\alpha}$ $(\lambda=0.71093 \AA)$ radiation. A total of 8061 reflections were measured with $\theta_{\max }=30.01^{\circ} ; 7605$ unique reflections; $R_{\text {int }}=0.0772 ; 4260$ reflections were considered observed on the criterion $I>2 \sigma(I)$ and corrected for Lorentz and polarisation effects. An empirical absorption correction was also made. A summary of the
crystal data, experimental details and refinement results is shown in Table 1.

The structure was solved by direct methods and refined on F^{2} by a full-matrix least-squares procedure. A weighting scheme $w=1 /\left[\mathrm{s}^{2} \quad\left(F_{\mathrm{o}}^{2}\right)+(0.0555 P)^{2}+\right.$ $1.3320 P$] where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$ was used in the latter stages of refinement. Computations were performed by means of VAX-SDP [20], SHELXS86 [21], and SCHAKAL [22] programs on a DEX MICROVAXII computer. Atomic scattering factors and anomalous dispersion corrections for all atoms were taken from International Tables for X-ray Crystallography [23].

Acknowledgements

We wish to thank the Ministerio de Educaión y Ciencia (DGICYT) (Proyecto No. PB92-0376) for financial support.

References

[1] S. Trofimenko, Inorg. Chem. 12 (1973) 1215.
[2] I. Omae, Coord. Chem. Rev. 79 (1979) 287.
[3] I. Omae, Coord. Chem. Rev. 28 (1979) 97.
[4] E.C. Constable, Polyhedron 3 (1984) 1037.
[5] I. Omae, Organometallic Intramolecular-Coordination Compounds, Elsevier, Amsterdam, 1986.
[6] G.R. Newkome, W.E. Puckett, W.K. Gupta, G.E. Kiefer, Chem. Rev. 86 (1986) 451.
[7] R.M. Ceder, J. Sales, X. Solans, M. Font-Altaba, J. Chem. Soc.

Dalton Trans. (1986) 1351.
[8] G.B. Cayhill, P.J. Steel, J. Organomet. Chem. 395 (1990) 375.
[9] G.B. Cayhill, P.J. Steel, J. Organomet. Chem. 395 (1990) 359.
[10] J.L. Casas, E. Gayoso, J.M. Vila, M.T. Pereira, M. Gayoso, Synth. React. Inorg. Met. Org. Chem. 21 (1991) 263.
[11] (a) J.M. Vila, M.T. Pereira, M. Gayoso, M.C. Rodríguez, J.M. Ortigueira, M. Thornton-Pett, J. Organomet. Chem. 426 (1992) 267; (b) J.M. Vila, M.T. Pereira, M. Gayoso, M.C. Rodríguez, J.M. Ortigueira, J.J. Fernández, M. López Torres, J. Organomet. Chem. 479 (1994) 37.
[12] J.M. Vila, M. Gayoso, M.T. Pereira, M. López Torres, G. Alonso, J.J. Fernández, J. Organomet. Chem. 445 (1993) 287.
[13] J.M. Vila, M. Gayoso, M.T. Pereira, M. López Torres, J.J. Fernández, A. Fernández, J.M. Ortigueira, J. Organomet. Chem. 506 (1996) 165.
[14] L. Pauling, The Nature of the Chemical Bond, 3rd ed., Cornell University Press, New York, 1960.
[15] J.M. Vila, M. Gayoso, M.T. Pereira, A. Romar, J.J. Fernández, M. Thornton-Pett, J. Organomet. Chem. 401 (1991) 385 and references therein.
[16] J.M. Vila, M. Gayoso, M. López Torres, et al., J. Organomet. Chem. 511 (1996) 129.
[17] J. Selbin, K. Abboud, S.F. Watkins, M.A. Gutiérrez, F.R. Fronczek, J. Organomet. Chem. 241 (1983) 259.
[18] S. H. Mastin, Inorg. Chem. 13 (1974) 1003.
[19] D.D. Perrin, W.L.F. Armarego, D.P. Perrin, Purification of Laboratory Chemicals, 2nd ed., Oxford, Pergamon, 1983.
[20] B.A. Frenz \& Associates, Structure determination package, SDP/VAX 2.2, College Station, TX, USA, and Enraf-Nonius, Delft, Netherlands, 1985.
[21] G.M. Sheldrick, SHELXTL, An integrated system for solving, refining and displaying crystal structures from diffraction data (Revision 5.1), University of Gottingen, Germany, 1985.
[22] E. Keller, SCHAKAL. Program for plotting molecular and crystal structures, University of Freiburg, Germany, 1988.
[23] International Tables for X-ray Crystallography, Kynoch Press, Birmingham, UK, 1974.

[^0]: * Corresponding author.

[^1]: 4.2.4. $\left[\mathrm{Pd}\left\{3-(\mathrm{CHO}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right\}(\mathrm{Cl})(\mathrm{PMePh})\right] \mathrm{9}$

 Yield 75%. Anal. Found: C, 58.3; H, 5.4; N, 2.8. $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NOPdPCl}$ requires: $\mathrm{C}, 58.3 ; \mathrm{H}, 5.3$; $\mathrm{N}, 2.5$. IR: $v(\mathrm{C}=\mathrm{N}), 1615 \mathrm{~m} \mathrm{~cm}^{-1} ; v(\mathrm{Pd}-\mathrm{Cl}), 299 \mathrm{~m} \mathrm{~cm}^{-1}$.

[^2]: 4.2.26. $\left[P d\left\{3-(C y C(H)=N) C_{6} H_{3} C(H)=N C y\right\}(C l)-\right.$ (PMePh_{2}) $\left.\left(\mathrm{NH}_{2} \mathrm{Cy}\right)\right] \mathbf{3 1}$

 Yield 60%. Anal. Found: C, 63.0; H, 7.0; N, 5.4. $\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{PdPCl}$ requires: $\mathrm{C}, 63.6 ; \mathrm{H}, 7.3 ; \mathrm{N}, 5.7$. IR: $v(\mathrm{C}=\mathrm{N}), \quad 1635 \mathrm{sh}, \mathrm{m}, \quad 1620 \mathrm{~m} \mathrm{~cm}{ }^{-1} ; \quad v(\mathrm{Pd}-\mathrm{Cl}), \quad 270 \mathrm{~m}$ cm^{-1}.

